Before
you build

Mode'l

A look at
systems
with Red Hat Al



I Contents

Introduction

The technical
evolution to
agentic Al

Page 3

Chapter1

Create and deploy
Al agents with

RedHatAl
Page 5

Chapter 2

Chapter 3

The Model

Context Protocol:
Standardizing
agent-toolinteraction
Page 9

Chapter 4

Llama Stack: The
unified’Al APl server
with OpenShift Al

Page 11

Conclusion

oundation fpr/

/ agentic A}/{uccess

Page 7 Page 14 / /
/ /
/ / / / /



Introduction k

The technical
evolution to
agentic Al

Agentic Al is reshaping how enterprises think about automation,
decision making, and scalability. But building a real-world agent is
not as simple as prompting a chatbot. Production-ready agentic
systems require more than language models: they demand a
unified architecture that coordinates reasoning, orchestrates
tools, maintains memory, safeguards data, and governs behavior.

This e-book takes a technical look at that architecture, grounded
in Red Hat's open source approach. From inference and tool

This is the next stage

orchestration to safety and observability, each building block

must be modular, security focused, and ready for production. in enterprlse AII and
That's where Red Hat® Al comes in. Built with Red Hat standardizationis
OpenShift® Al and powered by Llama Stack, Red Hat Al is a 0

b A o the foundation that
platform that provides the scaffolding to construct, deploy, and

manage intelligent agents at scale. makes it POSSibIe-

Rather than navigating fragmented frameworks and inconsistent
toolchains, organizations can use Red Hat Al to standardize

how they build and scale agentic workflows. Through open
standards such as the Model Context Protocol (MCP), Red Hat
helps unify how agents discover and use tools. By integrating
safety, evaluation, and infrastructure automation, Red Hat helps
teams go from proof-of-concept to production with greater
repeatability and trust.



The components of an agentic Al system

Task or user request Tool use: Uses external tools to gather data and

perform tasks.

Planning and execution: Develops and executes
multistep plans to achieve goals autonomously.

Reasoning: Applies logic and contextual understanding

to make informed decisions.
Al agent

Orchestration: Coordinates actions, tools, and agents

to dynamically adjust and complete tasks.

Communication protocols: allows connections
Planning Reasoning Orchestration
between components.

Figure 1. An agentic system has more capabilities than a standard LLM.

Terms to know

Agentic Al systems are more than just large language models The Llama Stack is a unified software layer that wraps Llama
(LLMs). They're a collection of multiple Al systems that work models in production-ready tools, including application
together to use reasoning, memory, planning, and outside tools programming interfaces (APIs), orchestration, logging, and
to carry out complex tasks over time. These systems follow tool integration. It simplifies the deployment and operation of
structured workflows, allowing an Al to act autonomously or Llama-based agentic Al systems in enterprise environments.

semi-autonomously in response to real-world conditions.

LangChain is an open source framework that helps developers

MCP is an open standard that defines how Al agents interact build complex applications using language models. Much like
with tools, data, and memory in a consistent, interpretable way. MCP and Llama Stack, it provides tools to connect models
It helps developers design Al systems that are modular, reusable, with external data, memory, and tools. While it is not the

and easier to debug or scale. baseline framework used with Red Hat Al, Red Hat Al is a

flexible open platform that can support other approaches if
they are appropriate for a project.



Chapter1

Create and T o0 o8
deploy Al
agents with . e
Red Hat Al oo

Creating an agentic Al system goes well beyond embedding a Crucially, these agents are not just single-shot assistants,
large language model (LLM) into an application. At the core but part of multistep workflows with embedded reasoning
of any effective agent is a system that can reason, plan, act, and memory. As complexity increases, Red Hat offers

and learn, and all of that relies on a diverse set of technical comprehensive lifecycle management and orchestration
components. These include reasoning chains that divide capabilities for multiagent applications with clear delegation
problems into sub-tasks, prompts that define agent behavior, and decision checkpoints.

memory for maintaining context, and external tools that provide
the ability to take action beyond the LLM's pretrained weights.

Red Hat Al helps streamline this complex architecture. Built
with OpenShift Al as a core component, the platform brings
together essential capabilities such as inference, orchestration,

: - . The path to enterprise-scale
security, observability, and compliance, and connects them to . . .
the tools Al agents need to function effectively. agentic Al starts with this
foundation: composable

With Red Hat Al, teams can begin with manageable use cases

and scale over time. Many organizations start by building architecture, repeatable tooling,
internal retrieval agents, deploying LLM-enhanced knowledge and a unified platform that

bots that answer questions based on company-specific A 3 A

data. Others build agents for log remediation and IT incident turns experlmentatlon into
resolution, integrating Red Hat OpenShift observability with operations. Red Hat Al hEIpS

Red Hat Ansible® Automation Platform and external application teams to bUiId With confidence,

programming interfaces (APIs). Another common scenario is

and deploy with intent.

Al-assisted code migration, where agents support traditional-
to-modern transitions by analyzing repositories and proposing
upgrade paths.




& RedHat Al

& RedHat Al
Inference Server

& RedHat
Enterprise Linux Al

‘ RedHat
OpenShift Al

Trusted, consistent and comprehensive foundation

NVIDIA

AMDZ1 intel

Hardware acceleration

Google aws

= =

Physical

Figure 2. OpenShift Al is part of Red Hat Al.

Use case
How organizations are building agents today

A healthcare company deployed an agentic system to automate
early-stage clinical trial recruitment, reducing manual effort and
speeding up lead qualification. The system starts by identifying
potential candidates through Facebook ads or electronic
medical records (EMR) uploads. Once ingested, an Al agent

armed with study-specific context initiates outreach via SMS

D
>

Private cloud

Public cloud Edge

(and increasingly voice calls), shares regulated trial details, and
answers questions. Qualified leads are guided to a prescreener
survey to determine eligibility. If they pass, they receive a

link to book an appointment via a scheduling widget. Health
Insurance Portability and Accountability Act (HIPAA) compliance
is maintained through business associate agreements with
providers such as OpenAl, and patient data is never used to train
models. The system integrates with standard integrations to
centralize scheduling and lead tracking.




Chapter 2

Red Hat OpenShift Al:
The enterprise-
scale platform

for the Al lifecycle

Transitioning from prototype to production remains among same interfaces used in local testing are supported in production
the most persistent challenges in enterprise Al, especially with environments. MCP servers provide a standard way to expose
agentic applications. OpenShift Al helps organizations build, run, and manage tools, with compatibility across frameworks and

and manage agentic applications. robust integration into Red Hat's security and observability stack.
OpenShift Al incorporates core Red Hat technologies to provide Security and compliance are integral to OpenShift Al. Red Hat's
a production-grade foundation for agentic workloads. Central longstanding focus on regulated environments means agentic

to this is its operator-based model, which encodes deployment applications can be deployed with guardrails and role-based

best practices and automates platform configuration. Operators access already built in. Integrated observability tooling helps
streamline everything from autoscaling and observability teams trace agent decisions, monitor tool invocations, and build
integration to performance tuning and horizontal or vertical analytics pipelines that support ongoing evaluation.

scaling strategies—freeing engineering teams to focus on building
agents, not managing infrastructure.

OpensShift Al builds on the capabilities of Red Hat OpenShift to
provide a platform for managing the lifecycle of generative and

predictive Al models at scale.

The platform’s native integration with components like Llama
Stack and MCP helps unify development and deployment
practices. Developers can build on top of Llama Stack’s OpenAl-

compatible APl and deploy agents with confidence, knowing the


https://www.redhat.com/en/technologies/cloud-computing/openshift

The result is a unified platform where
Al engineers, IT teams, and security
stakeholders can collaborate more
effectively. Whether deploying a
simple support agent or a multiagent
orchestration pattern for internal

automation, OpenShift Al helps

operationalize agentic Al systems—
safely, repeatedly, and at scale.

Use case
How organizations are building agents today

A customer developed a procurement assistant that could
navigate enterprise resource planning (ERP) APIs via MCP,
interpret policy documents, and recommend vendor approvals.
This agent automated routine steps such as verifying supplier
eligibility and reviewing contract terms, reducing bottlenecks in
procurement workflows while maintaining compliance. It serves as
a model for embedding agentic workflows into existing enterprise

systems without the need to rebuild core logic.




Chapter 3

The Model

Context Protocol: ’. .' ‘
Standardizing agent-

tool interaction

Modern agentic systems rely on tool use to extend the
capabilities of LLMs. While LLMs provide reasoning, they need
tools to take action, access enterprise systems, and gather
real-time information. MCP provides the missing connective
tissue between agents and these external tools. While MCP was
only recently introduced, it has rapidly been adopted as a new
standard for agentic Al.

Before MCP, tool integration was manual, inconsistent, and
difficult to scale. Developers had to write custom code to
define how agents discover and interact with APIs. This created
duplication across teams, made updates less stable, and
introduced risk every time a system changed. MCP standardizes
this process with a modular, interoperable specification that
allows agents to discover, select, and invoke tools reliably, much
like a USB-C standard for Al workflows.

With MCP, developers expose functionality as tools using

a common protocol. These tools can span APls, databases,
business systems, or even internal utilities. MCP servers act as a
hub where tools are hosted, documented, and secured. Agents
can then dynamically query this server, reason about tool usage,
and invoke workflows across multiple systems.

This standardization opens the door to broader participation.
With an MCP-based architecture, teams can reuse existing
tool definitions, accelerate onboarding, and reduce platform
fragmentation. For smaller or larger LLMs, MCP also helps
organizations have more consistent tool usage without
retraining models or rewriting logic.

However, MCP is not without its challenges. Poorly written
tool descriptions can confuse agents, leading to misfires
or hallucinated behavior. Worse, tools that expose insecure
prompt strings or overly broad permissions risk becoming
vectors for exploitation.

Red Hat has a roadmap toward a MCP gateway that helps
mitigate these risks by embedding governance, security
considerations, and observability directly into the MCP server
architecture. When MCP servers are deployed within OpenShift
Al, they inherit native integration with Red Hat's platform-level
policy enforcement, role-based access controls, and audit
mechanisms. This means access to tools exposed through MCP
can be strictly managed by role and namespace, aligning with
identity and authorization policies.



Additionally, the tool descriptions and prompt schemas hosted
within MCP can be automatically scanned for vulnerabilities
using the container and application security toolchain from

Red Hat OpenShift. This allows platform teams to identify

potentially dangerous tool configurations, such as tools that

allow prompt injection or that expose sensitive backend
systems without proper input validation.

From an operational perspective, Red Hat OpenShift
observability tools allow continuous monitoring of agent-

tool interactions. Teams can view tool invocation patterns,

track usage metrics, and set alerts for anomalous behavior.
Integrated audit logs provide traceability across tool usage and
decision-making chains, helping enterprises meet internal and

external compliance requirements.

Use case
How organizations are building agents today

By combining MCP with other
Red Hat Al components (such
as Llama Stack’s evaluation,
tools, and safety APIs), as well
as a comprehensive platform,
customers can deploy and
operate MCP servers reliably,
helping create scalable and
security-focused agentic

Al workflows. This helps
organizations build agents
that don’t just talk about doing
things—they actually do them.

A cybersecurity company implemented an Al-powered support Next, a resolution agent generates responses using retrieval-

system to automate live chat and ticket resolution, aiming to cut augmented generation (RAG), drawing from internal docs and

wait times and reduce the burden on human agents. An intake
agent processes the query, which then goes to a classification

agent that performs sentiment tagging, urgency analysis, and

profanity checks using keyword lists and gen Al sentiment

analysis. Problematic language triggers a manual review.

past tickets. If needed, a routing agent escalates unresolved

or low-confidence tickets to a human support representative.
Human agents validate Al-suggested replies, especially for
compliance-sensitive content. Airtable logs track overrides and
errors, supporting ongoing model improvement. After closure,

sentiment is re-evaluated to confirm customer satisfaction.



Chapter 4

Llama Stack:
The unified Al

APl server with

OpenShift Al

Llama Stack is Red Hat's unified Al control plane, an OpenAl-
compatible APl server built to streamline the development,
deployment, and management of agentic Al applications.
Acting as a central interface for inferencing, memory,

tool orchestration, and evaluation, Llama Stack provides
developers with the consistency and flexibility needed to
build sophisticated agents across environments.

¢

Unlike many other solutions, which are typically hosted
services, Llama Stack helps organizations produce a
hosted-style experience on owned hardware or clusters.
For organizations that need data sovereignty, have specific
infrastructure requirements, or want to avoid being tied to a
specific vendor, this flexibility is essential.

At its core, Llama Stack delivers a standard API layer that
supports the full agentic lifecycle including compatibility
with OpenAl APIs beyond just inference. It integrates directly
with OpenShift Al and supports common agent tasks such as
retrieval-augmented generation (RAG), safety, evaluation,
telemetry, and context-aware inferencing. Developers

can start with a lightweight local deployment and scale

to enterprise-grade infrastructure, using the same APls,
libraries, and interfaces throughout.

n



Red Hat offers multiple ways to adopt Llama Stack, depending
on team readiness and project complexity. Teams new to
agentic systems can start quickly using built-in clients and
SDKs that provide preconfigured components such as tool
calling, memory, and context management. These features
help streamline development and reduce complexity. For
more advanced users, Llama Stack is API-compatible with
OpenAl's tool-use interfaces and works with many well-known
and popular frameworks. This allows teams to integrate
existing agents and workflows without rearchitecting, while
still benefiting from a consistent interface and lifecycle
management tools across environments.

What distinguishes Llama Stack is its open-source APl layer
and server that standardize Al application development across
providers. It supports OpenAl-compatible inference alongside
additional APIs for other Al functions, such as evaluations,
post-training, and vector stores, and shields to power RAG

and agent workflows. Llama Stack can run in self-hosted
environments, on-premise, or in the cloud, giving organizations
deployment flexibility.

Within OpenShift Al, a Kubernetes Operator manages Llama

Stack lifecycle tasks such as autoscaling, observability, and
access control, giving developers and platform teams a unified
set of tools for scaling agents reliably. Llama Stack also
includes native support for evaluation and telemetry, including
OpenTelemetry, to help teams validate Al system performance,
monitor safety metrics, and trace agent behavior across

production environments.

Beyond just inferencing, LIama Stack is designed to support
the many moving parts of agentic systems. It can serve as a
bridge between hosted and local models, standardize access
to safety tools such as TrustyAl, and facilitate interaction
with MCP servers. Developers get a consistent platform

for testing, iterating, and operationalizing agents, whether
they're running proof-of-concept demos or automating
production IT workflows.

Llama Stack turns the
complexity of agent
orchestration into a modular,

repeatable process. With Red Hat's

support, and integration with
OpenShift Al, it gives teams
the control plane they need to
scale agentic Al systems safely
and predictably.



https://github.com/opendatahub-io/llama-stack-k8s-operator
https://opentelemetry.io/
https://trustyai.org/docs/main/main

A modular approach to building Al agents

Llama Stack
Datasets Inference
Al Vector.io Telemetry Other agent
platform frameworks
Agentic Evaluation
Tool calling
Safety (MCP)
+ Over the air + Egress + Authorization
updates
Platform + Storage + Registry
services + Monitoring
Log + Install
Networking forwarding

Hardware accelerators

Deploy anywhere

Figure 3. Llama Stack fits into your modular open framework.

Use case
How organizations are building agents today

A software organization built a code migration assistant that
analyzed traditional Java applications and recommended updates
to align with modern frameworks. The agent used Llama Stack

for inference and MCP-integrated tools to validate compatibility

and suggest upgrade paths. This streamlined the migration
process, reducing technical debt and improving application
resilience. It also helped development teams focus on feature

innovation rather than spending time rewriting legacy code.

Red Hat Al is a platform to:

* Build agents using Llama Stackw’s native
capabilities and implementations.

* Bring compatible Llama Stack implementations to
OpenShift Al

* Use your own agent framework and selectively
incorporate Llama Stack APIs.

* Build with Core Primitives and manage your own
agent framework as a standard workloads.




Conclusion

Red Hat Al:

Your technical
foundation for
agentic Al success

Agentic Al promises more intelligent, adaptive applications, but
without standardization, enterprise teams risk fragmentation,
inefficiency, and operational risk. Red Hat Al provides the
scaffolding needed to build these systems with confidence.
Through components like OpenShift Al, MCP, and Llama Stack,
Red Hat offers a consistent foundation to take Al agents from
proof-of-concept to production.

© 2025 Red Hat. Red Hat, the Red Hat logo, OpenShift, and Ansible are trademarks or registered trademarks of Red Hat or
its subsidiaries in the United States and other countries. All other trademarks are the property of their respective owners.

By integrating reasoning, tool use, memory, safety, and
evaluation into a unified platform, Red Hat Al simplifies how
teams experiment, scale, and operationalize Al agents.

* Developers gain access to production-grade APls.
* Platform teams can manage lifecycles and enforce security.

* Organizations benefit from open standards that protect
their investments.

Whether deploying a simple internal bot or architecting
multiagent systems, Red Hat Al equips you with what you
need to build security-focused, enterprise-grade agentic
applications—repeatably, and on your terms.

14



	Introduction
	The technical evolution to agentic AI

	Chapter 1
	Create and deploy AI agents with 
Red Hat AI

	Chapter 2
	Red Hat OpenShift AI: 
The enterprise-grade platform for the AI lifecycle

	Chapter 3
	The Model Context Protocol: Standardizing agent-tool interaction

	Chapter 4
	Llama Stack: The unified AI API server with OpenShift AI

	Conclusion
	Red Hat AI: Your technical foundation for agentic AI Success


