
Model

Agent

Before
you build

A look at
AI agentic systems
with Red Hat AI

Contents

Introduction

The technical
evolution to
agentic AI
	 	
Page 3

Chapter 1

Create and deploy
AI agents with
Red Hat AI	
Page 5

Chapter 2

Red Hat OpenShift AI:
The enterprise-scale
platform for the
AI lifecycle
Page 7

Chapter 3

The Model
Context Protocol:
Standardizing
agent-tool interaction
Page 9

Chapter 4

Llama Stack: The
unified AI API server
with OpenShift AI
Page 11

Conclusion

Red Hat AI:
Your technical
foundation for
agentic AI success
Page 14	

Introduction

The technical
evolution to
agentic AI

Agentic AI is reshaping how enterprises think about automation,
decision making, and scalability. But building a real-world agent is
not as simple as prompting a chatbot. Production-ready agentic
systems require more than language models: they demand a
unified architecture that coordinates reasoning, orchestrates
tools, maintains memory, safeguards data, and governs behavior.

This e-book takes a technical look at that architecture, grounded
in Red Hat’s open source approach. From inference and tool
orchestration to safety and observability, each building block
must be modular, security focused, and ready for production.
That’s where Red Hat® AI comes in. Built with Red Hat
OpenShift® AI and powered by Llama Stack, Red Hat AI is a
platform that provides the scaffolding to construct, deploy, and
manage intelligent agents at scale.

Rather than navigating fragmented frameworks and inconsistent
toolchains, organizations can use Red Hat AI to standardize
how they build and scale agentic workflows. Through open
standards such as the Model Context Protocol (MCP), Red Hat
helps unify how agents discover and use tools. By integrating
safety, evaluation, and infrastructure automation, Red Hat helps
teams go from proof-of-concept to production with greater
repeatability and trust.

This is the next stage
in enterprise AI, and
standardization is
the foundation that
makes it possible.

3

The components of an agentic AI system

Task or user request

Orchestration

AI agent

ReasoningPlanningTools

•	 Tool use: Uses external tools to gather data and
perform tasks.

•	 Planning and execution: Develops and executes
multistep plans to achieve goals autonomously.

•	 Reasoning: Applies logic and contextual understanding
to make informed decisions.

•	 Orchestration: Coordinates actions, tools, and agents
to dynamically adjust and complete tasks.

•	 Communication protocols: allows connections
between components.

Figure 1. An agentic system has more capabilities than a standard LLM.

Terms to know

Agentic AI systems and workflows
Agentic AI systems are more than just large language models
(LLMs). They’re a collection of multiple AI systems that work
together to use reasoning, memory, planning, and outside tools
to carry out complex tasks over time. These systems follow
structured workflows, allowing an AI to act autonomously or
semi-autonomously in response to real-world conditions.

The Model Context Protocol (MCP)
MCP is an open standard that defines how AI agents interact
with tools, data, and memory in a consistent, interpretable way.
It helps developers design AI systems that are modular, reusable,
and easier to debug or scale.

Llama Stack
The Llama Stack is a unified software layer that wraps Llama
models in production-ready tools, including application
programming interfaces (APIs), orchestration, logging, and
tool integration. It simplifies the deployment and operation of
Llama-based agentic AI systems in enterprise environments.

LangChain
LangChain is an open source framework that helps developers
build complex applications using language models. Much like
MCP and Llama Stack, it provides tools to connect models
with external data, memory, and tools. While it is not the
baseline framework used with Red Hat AI, Red Hat AI is a
flexible open platform that can support other approaches if
they are appropriate for a project.

4

Chapter 1

Creating an agentic AI system goes well beyond embedding a
large language model (LLM) into an application. At the core
of any effective agent is a system that can reason, plan, act,
and learn, and all of that relies on a diverse set of technical
components. These include reasoning chains that divide
problems into sub-tasks, prompts that define agent behavior,
memory for maintaining context, and external tools that provide
the ability to take action beyond the LLM’s pretrained weights.

Red Hat AI helps streamline this complex architecture. Built
with OpenShift AI as a core component, the platform brings
together essential capabilities such as inference, orchestration,
security, observability, and compliance, and connects them to
the tools AI agents need to function effectively.

With Red Hat AI, teams can begin with manageable use cases
and scale over time. Many organizations start by building
internal retrieval agents, deploying LLM-enhanced knowledge
bots that answer questions based on company-specific
data. Others build agents for log remediation and IT incident
resolution, integrating Red Hat OpenShift observability with
Red Hat Ansible® Automation Platform and external application
programming interfaces (APIs). Another common scenario is
AI-assisted code migration, where agents support traditional-
to-modern transitions by analyzing repositories and proposing
upgrade paths.

The path to enterprise-scale
agentic AI starts with this
foundation: composable
architecture, repeatable tooling,
and a unified platform that
turns experimentation into
operations. Red Hat AI helps
teams to build with confidence,
and deploy with intent.

Crucially, these agents are not just single-shot assistants,
but part of multistep workflows with embedded reasoning
and memory. As complexity increases, Red Hat offers
comprehensive lifecycle management and orchestration
capabilities for multiagent applications with clear delegation
and decision checkpoints.

Create and
deploy AI
agents with
Red Hat AI

5

Trusted, consistent and comprehensive foundation

Hardware acceleration

Physical Virtual Private cloud Public cloud Edge

Figure 2. OpenShift AI is part of Red Hat AI.

Use case
How organizations are building agents today

Clinical trial recruitment and coordination

A healthcare company deployed an agentic system to automate
early-stage clinical trial recruitment, reducing manual effort and
speeding up lead qualification. The system starts by identifying
potential candidates through Facebook ads or electronic
medical records (EMR) uploads. Once ingested, an AI agent
armed with study-specific context initiates outreach via SMS

(and increasingly voice calls), shares regulated trial details, and
answers questions. Qualified leads are guided to a prescreener
survey to determine eligibility. If they pass, they receive a
link to book an appointment via a scheduling widget. Health
Insurance Portability and Accountability Act (HIPAA) compliance
is maintained through business associate agreements with
providers such as OpenAI, and patient data is never used to train
models. The system integrates with standard integrations to
centralize scheduling and lead tracking.

6

Chapter 2

Red Hat OpenShift AI:
The enterprise-
scale platform
for the AI lifecycle

Transitioning from prototype to production remains among
the most persistent challenges in enterprise AI, especially with
agentic applications. OpenShift AI helps organizations build, run,
and manage agentic applications.

OpenShift AI incorporates core Red Hat technologies to provide
a production-grade foundation for agentic workloads. Central
to this is its operator-based model, which encodes deployment
best practices and automates platform configuration. Operators
streamline everything from autoscaling and observability
integration to performance tuning and horizontal or vertical
scaling strategies—freeing engineering teams to focus on building
agents, not managing infrastructure.

OpenShift AI builds on the capabilities of Red Hat OpenShift to
provide a platform for managing the lifecycle of generative and
predictive AI models at scale.

The platform’s native integration with components like Llama
Stack and MCP helps unify development and deployment
practices. Developers can build on top of Llama Stack’s OpenAI-
compatible API and deploy agents with confidence, knowing the

same interfaces used in local testing are supported in production
environments. MCP servers provide a standard way to expose
and manage tools, with compatibility across frameworks and
robust integration into Red Hat’s security and observability stack.

Security and compliance are integral to OpenShift AI. Red Hat’s
longstanding focus on regulated environments means agentic
applications can be deployed with guardrails and role-based
access already built in. Integrated observability tooling helps
teams trace agent decisions, monitor tool invocations, and build
analytics pipelines that support ongoing evaluation.

7

https://www.redhat.com/en/technologies/cloud-computing/openshift

 The result is a unified platform where
AI engineers, IT teams, and security
stakeholders can collaborate more
effectively. Whether deploying a
simple support agent or a multiagent
orchestration pattern for internal
automation, OpenShift AI helps
operationalize agentic AI systems—
safely, repeatedly, and at scale.

Use case
How organizations are building agents today

AI-focused business
process automation

A customer developed a procurement assistant that could
navigate enterprise resource planning (ERP) APIs via MCP,
interpret policy documents, and recommend vendor approvals.
This agent automated routine steps such as verifying supplier
eligibility and reviewing contract terms, reducing bottlenecks in
procurement workflows while maintaining compliance. It serves as
a model for embedding agentic workflows into existing enterprise
systems without the need to rebuild core logic.

8

Chapter 3

The Model
Context Protocol:
Standardizing agent-
tool interaction

Modern agentic systems rely on tool use to extend the
capabilities of LLMs. While LLMs provide reasoning, they need
tools to take action, access enterprise systems, and gather
real-time information. MCP provides the missing connective
tissue between agents and these external tools. While MCP was
only recently introduced, it has rapidly been adopted as a new
standard for agentic AI.

Before MCP, tool integration was manual, inconsistent, and
difficult to scale. Developers had to write custom code to
define how agents discover and interact with APIs. This created
duplication across teams, made updates less stable, and
introduced risk every time a system changed. MCP standardizes
this process with a modular, interoperable specification that
allows agents to discover, select, and invoke tools reliably, much
like a USB-C standard for AI workflows.

With MCP, developers expose functionality as tools using
a common protocol. These tools can span APIs, databases,
business systems, or even internal utilities. MCP servers act as a
hub where tools are hosted, documented, and secured. Agents
can then dynamically query this server, reason about tool usage,
and invoke workflows across multiple systems.

This standardization opens the door to broader participation.
With an MCP-based architecture, teams can reuse existing
tool definitions, accelerate onboarding, and reduce platform
fragmentation. For smaller or larger LLMs, MCP also helps
organizations have more consistent tool usage without
retraining models or rewriting logic.

However, MCP is not without its challenges. Poorly written
tool descriptions can confuse agents, leading to misfires
or hallucinated behavior. Worse, tools that expose insecure
prompt strings or overly broad permissions risk becoming
vectors for exploitation.

Red Hat has a roadmap toward a MCP gateway that helps
mitigate these risks by embedding governance, security
considerations, and observability directly into the MCP server
architecture. When MCP servers are deployed within OpenShift
AI, they inherit native integration with Red Hat’s platform-level
policy enforcement, role-based access controls, and audit
mechanisms. This means access to tools exposed through MCP
can be strictly managed by role and namespace, aligning with
identity and authorization policies.

9

Additionally, the tool descriptions and prompt schemas hosted
within MCP can be automatically scanned for vulnerabilities
using the container and application security toolchain from
Red Hat OpenShift. This allows platform teams to identify
potentially dangerous tool configurations, such as tools that
allow prompt injection or that expose sensitive backend
systems without proper input validation.

From an operational perspective, Red Hat OpenShift
observability tools allow continuous monitoring of agent-
tool interactions. Teams can view tool invocation patterns,
track usage metrics, and set alerts for anomalous behavior.
Integrated audit logs provide traceability across tool usage and
decision-making chains, helping enterprises meet internal and
external compliance requirements.

By combining MCP with other
Red Hat AI components (such
as Llama Stack’s evaluation,
tools, and safety APIs), as well
as a comprehensive platform,
customers can deploy and
operate MCP servers reliably,
helping create scalable and
security-focused agentic
AI workflows. This helps
organizations build agents
that don’t just talk about doing
things—they actually do them.

Use case
How organizations are building agents today

Customer support at scale

A cybersecurity company implemented an AI-powered support
system to automate live chat and ticket resolution, aiming to cut
wait times and reduce the burden on human agents. An intake
agent processes the query, which then goes to a classification
agent that performs sentiment tagging, urgency analysis, and
profanity checks using keyword lists and gen AI sentiment
analysis. Problematic language triggers a manual review.

Next, a resolution agent generates responses using retrieval-
augmented generation (RAG), drawing from internal docs and
past tickets. If needed, a routing agent escalates unresolved
or low-confidence tickets to a human support representative.
Human agents validate AI-suggested replies, especially for
compliance-sensitive content. Airtable logs track overrides and
errors, supporting ongoing model improvement. After closure,
sentiment is re-evaluated to confirm customer satisfaction.

10

Chapter 4

Llama Stack:
The unified AI
API server with
OpenShift AI

Llama Stack is Red Hat’s unified AI control plane, an OpenAI-
compatible API server built to streamline the development,
deployment, and management of agentic AI applications.
Acting as a central interface for inferencing, memory,
tool orchestration, and evaluation, Llama Stack provides
developers with the consistency and flexibility needed to
build sophisticated agents across environments.

Unlike many other solutions, which are typically hosted
services, Llama Stack helps organizations produce a
hosted-style experience on owned hardware or clusters.
For organizations that need data sovereignty, have specific
infrastructure requirements, or want to avoid being tied to a
specific vendor, this flexibility is essential.

At its core, Llama Stack delivers a standard API layer that
supports the full agentic lifecycle including compatibility
with OpenAI APIs beyond just inference. It integrates directly
with OpenShift AI and supports common agent tasks such as
retrieval-augmented generation (RAG), safety, evaluation,
telemetry, and context-aware inferencing. Developers
can start with a lightweight local deployment and scale
to enterprise-grade infrastructure, using the same APIs,
libraries, and interfaces throughout.

11

Red Hat offers multiple ways to adopt Llama Stack, depending
on team readiness and project complexity. Teams new to
agentic systems can start quickly using built-in clients and
SDKs that provide preconfigured components such as tool
calling, memory, and context management. These features
help streamline development and reduce complexity. For
more advanced users, Llama Stack is API-compatible with
OpenAI’s tool-use interfaces and works with many well-known
and popular frameworks. This allows teams to integrate
existing agents and workflows without rearchitecting, while
still benefiting from a consistent interface and lifecycle
management tools across environments.

What distinguishes Llama Stack is its open-source API layer
and server that standardize AI application development across
providers. It supports OpenAI-compatible inference alongside
additional APIs for other AI functions, such as evaluations,
post-training, and vector stores, and shields to power RAG
and agent workflows. Llama Stack can run in self-hosted
environments, on-premise, or in the cloud, giving organizations
deployment flexibility.

Within OpenShift AI, a Kubernetes Operator manages Llama
Stack lifecycle tasks such as autoscaling, observability, and
access control, giving developers and platform teams a unified
set of tools for scaling agents reliably. Llama Stack also
includes native support for evaluation and telemetry, including
OpenTelemetry, to help teams validate AI system performance,
monitor safety metrics, and trace agent behavior across
production environments.

Beyond just inferencing, Llama Stack is designed to support
the many moving parts of agentic systems. It can serve as a
bridge between hosted and local models, standardize access
to safety tools such as TrustyAI, and facilitate interaction
with MCP servers. Developers get a consistent platform
for testing, iterating, and operationalizing agents, whether
they’re running proof-of-concept demos or automating
production IT workflows.

Llama Stack turns the
complexity of agent
orchestration into a modular,
repeatable process. With Red Hat’s
support, and integration with
OpenShift AI, it gives teams
the control plane they need to
scale agentic AI systems safely
and predictably.

12

https://github.com/opendatahub-io/llama-stack-k8s-operator
https://opentelemetry.io/
https://trustyai.org/docs/main/main

A modular approach to building AI agents

AI
platform

Llama Stack

Other agent
frameworks

Datasets

Vector.io

Inference

Telemetry

Agentic

Safety Tool calling
(MCP)

Evaluation

Platform
services

•	 Over the air
updates

•	 Monitoring

•	 Networking

•	 Egress

•	 Storage

•	 Log
forwarding

•	 Authorization

•	 Registry

•	 Install

Hardware accelerators

Deploy anywhere

Red Hat AI is a platform to:

•	 Build agents using Llama Stackw’s native
capabilities and implementations.

•	 Bring compatible Llama Stack implementations to
OpenShift AI.

•	 Use your own agent framework and selectively
incorporate Llama Stack APIs.

•	 Build with Core Primitives and manage your own
agent framework as a standard workloads.

Figure 3. Llama Stack fits into your modular open framework.

Use case
How organizations are building agents today

Developer productivity

A software organization built a code migration assistant that
analyzed traditional Java applications and recommended updates
to align with modern frameworks. The agent used Llama Stack
for inference and MCP-integrated tools to validate compatibility
and suggest upgrade paths. This streamlined the migration
process, reducing technical debt and improving application
resilience. It also helped development teams focus on feature
innovation rather than spending time rewriting legacy code.

13

Conclusion

Red Hat AI:
Your technical
foundation for
agentic AI success

Agentic AI promises more intelligent, adaptive applications, but
without standardization, enterprise teams risk fragmentation,
inefficiency, and operational risk. Red Hat AI provides the
scaffolding needed to build these systems with confidence.
Through components like OpenShift AI, MCP, and Llama Stack,
Red Hat offers a consistent foundation to take AI agents from
proof-of-concept to production.

By integrating reasoning, tool use, memory, safety, and
evaluation into a unified platform, Red Hat AI simplifies how
teams experiment, scale, and operationalize AI agents.

•	 Developers gain access to production-grade APIs.

•	 Platform teams can manage lifecycles and enforce security.

•	 Organizations benefit from open standards that protect
their investments.

Whether deploying a simple internal bot or architecting
multiagent systems, Red Hat AI equips you with what you
need to build security-focused, enterprise-grade agentic
applications—repeatably, and on your terms.

© 2025 Red Hat. Red Hat, the Red Hat logo, OpenShift, and Ansible are trademarks or registered trademarks of Red Hat or
its subsidiaries in the United States and other countries. All other trademarks are the property of their respective owners. 14

	Introduction
	The technical evolution to agentic AI

	Chapter 1
	Create and deploy AI agents with
Red Hat AI

	Chapter 2
	Red Hat OpenShift AI:
The enterprise-grade platform for the AI lifecycle

	Chapter 3
	The Model Context Protocol: Standardizing agent-tool interaction

	Chapter 4
	Llama Stack: The unified AI API server with OpenShift AI

	Conclusion
	Red Hat AI: Your technical foundation for agentic AI Success

